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Abstract. Tunnelling of mesoscopic quantum spins, i.e. magnetization, in a time-periodic
external field is studied analytically. Three independent mechanisms of localization or
blocking of the magnetization are isolated, nhamely the crossing of Floguet eigenvalues, special
frequencies, and the breakdown of a symmetry which would allow tunnelling between degenerate
minima. Symmetry breakdown is discussed in detail in the adiabatic region where the external
field changes slowly. For high frequencies, we take advantage of the averaging method and are
able to confirm that AC hampering is a rather general property. We also numerically show that
spin hampering persists in the classically chaotic region, even outside the domain of applicability
of the averaging method.

1. Introduction and summary

During the last decade, macroscopic quantum tunnelling of the magnetization has been a
subject of intensive research, both theoretically [1-8] and experimentally; see in particular
[6]. More recently, the problem of tunnelling of a spin (of large spin quantum number

S > 1) under the influence of a perturbation periodidime has aroused special interest

in connection with the behaviour of mesoscopic magnetic moments in an anisotropic field
[9]. In [9] the following three typical examples of a periodically driven spin system have
been studied:

Hy = —yS.2 —aS, — 8S. cojwr) 1)
Hy = —yS.2 — aS, cojwr) 2)
Hz = —yS.2 — a[S, coswr) + S, sin(wr)] (3

with «, y, § positive. Throughout what follows, operators always wear a hat whereas
their classical counterparts do not. The anisotropy is represented /5y’ and dominates
the other terms, i.ew,§ « yhS, so that the tunnelling condition is satisfied. Given an
unperturbedlevel splitting
AE = hay 4)

which is obtained, for example, by the settifig= 0 in H; or w = 0 in H, and Hs, we
distinguish three cases, as in [9]:

e w > wo, high frequency;

® o ~ wp, resonance;

e w K wp, adiabatic case.
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The resonance case was analytically dealt with in [9], and we have nothing to add to its
conclusions. In this paper, we shall complement the analysis of [9] in the other two cases.
It is natural to compare the AC behaviour &f with that of § = 0 sinces # 0 in general
favours tunnelling in the particle case. FH and H;, the reference state is = 0. As
compared with the time-independent ‘reference’ Hamiltonians, an AC field often seems to
slow down tunnelling. We call this phenomenon *hampering’.

Before proceeding, it may be well to face the question of how the above Hamiltonians
came about and whether spin quantum tunnelling can be observed experimentally [10-12].
Tunnelling of molecular spins has been found injMacetate crystals, where each molecule
carries a spin of fixed angular momentum:18nd experiences eonstantmagnetic field
H. The corresponding Hamiltonian is given by

I:I:—ySZZ—g/LBS-H.

Replacing a constar®tl by H (t) = (h., 0, h, Coswt) one obtains the HamiltoniaA;. The
HamiltoniansH, and H3 can be realized equally straightforwardly.

The theoretical problem of how a giant quantum spin tunnels was solved surprisingly
late in the evolution of quantum mechanics. It was 1986 when two types of solution
appeared. Enz and Schilling [2] solved a special case by mapping it onto a particle problem
through the Villain transformation. The particle problem was then solved to high precision
by means of a functional-integral technique. Van Hemmen ditd B] started with the
Schibdinger equation itself and developed a WKB formalism for quantum spins, which is
used throughout the following. It allows for both high-precision calculations of the level
splitting and the tunnelling rate and forumiversal representation of these quantities, that
does not depend on the detailed form of the Hamiltonian and (thus) is less precise but has
been shown [8] to exactly agree with spin functional-integral results of Chudnovsky and
Gunther [5]. The early papers did not allow the Hamiltonian to be time dependent. Lifting
this restriction, then, seems more than timely. A first ansala (1)—(3) was formulated
by van Hemmen andi6 [9].

In section 2 we study localization properties properly. We are able to idethtiée
independent sources &in localization i.e. of how a spin gets stuck. We also study
the adiabatic case in detail for all three Hamiltonians, pointing out some very interesting
qualitative differences between them. Section 3 is devoted to a numerical study of the
tunnelling probability in the high-frequency case for Hamiltonidhsand H- in different
regions of the(s, w) plane, corresponding to classically integrable and chaotic dynamics.
One of our motivations in this section was, and is, the striking phenomenon of ‘chaotic
guantum tunnelling’ as studied for the particle case in [13-15]. Section 4 summarizes our
results.

2. Mechanisms of localization

A beautiful feature of particle systems is the existence of apparently three independent
mechanisms of localization: Anderson localization, localization by Cantori, and localization
through scars of special periodic orbits [16]. Spins behave very differently from particles
[1], but three (independent) mechanisms of spin localization in an AC field are now apparent.

e Crossing of Floguet eigenvalues.

e Localization, for instance, for a special sequence of valuels ®fin H, as furnished
by the averaging method9]. For the moment it looks as if this kind of localization and
crossing of Floquet eigenvalues are two independent processes—exceptions are allowed—
but a proof is still missing.
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e Breakdown of a symmetry which allowed a tunnelling between degenerate minima.
For example, leR denote a rotation througl about thex-axis. This is a symmetry of
H,, broken inH; by the term—4§S, coqwr), which thus destroys quantum coherence. We

shall analyse all this in detail in the adiabatic regime.

2.1. Level crossing

Returning to the level crossing, we note that this type of localization has already been
shown in the particle case [17]. We first discuss the analogues of the symmetry operator
first introduced by Breueet al [24]. In so doing, we assume a spectral representation with
S, diagonal: S, |m) = hm|m) where—S < m < S and S is the spin quantum number. Let

o = hS ands range through the intervaHo, o], that would contain the spectrum &f

in the limit S — oo with o = &S fixed. As long asS is finite, s samples the allowed
eigenvalues of5, and S, = a(s)(T; + T_5)/2. Here(Tur f)(s) = f(s £ h) defines a shift
operator andi(s) = /o (o +h) — s2. We define the symmetry/ by

N

V=Rt (5)

where R is the rotation throughr about thex-axis introduced before; in the spectral
representation, it acts aRf)(s,1) = f(—s,1). Furthermore,fg is the shift by half a
period in the time variable:

T
(fgf)(s,t)zf(s,t—i-Z). (6)

The operatotV is unitary,

V¥ =1IR*=1_
2

>

vi=v1 (7)

FurthermoreV commutes withH(¢) for all times,

2

1 — T _ T
—i-éa(s) |:f (—s+h,t+2>+f<—s—h,t+2)}

= (H1V f)(s,1). ®)

The monodromy matriXJ (T) is defined as the unitary time evolution operatofr)
evaluated one period later, i.e. at time= T. The operatotU (t) being unitary, one can
write U(T) = exp(iHgT) for some HermitianHg, whose eigenvalues are call&bquet
eigenvalues. They are defined mod/Z" = w. If we want to indicate which Hamiltonian
is involved, we writeU;(T) with i = 1, 2, 3 specifying one of the Hamiltonians listed in
(1)-(3). Because of (8)¢ also commutes with the time-evolution operator associated with
ﬁl(t), and hence with the monodromy matrix,

[V, Uy(T)] = 0. )

Accordingly, Floquet eigenvaluamay crossupon variation of a single real parameter (

or 8, keeping the other ones fixed) as long as the eigenstates in the two branches that cross
correspond to different eigenvalues Bt In order to see this we use a von Neumann—
Wigner argument [19]. The gist of their argument is ingenious but quite simple. Let us
take a complex matrix whose elements depend on some real parameters. For instance, a
Hamiltonian is, in general, a complex Hermitian matrix. It is obvious that this kind of

. 5 T
(VH1(t) f)(s,t) = —[yS° + §Scoqwt)] f (—s, t+ )
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symmetry as well as ‘accidental’ degeneracies (which will be neglected) reduce the number

of free parameters. Taking advantage of the spectral theorem one counts the remaining free

real parameters of the matrixith and withouta degenerate eigenvalue. Their difference

D gives us the number of parameters that have to be varied in order to produce a level

crossing. It is three for a complex Hermitian matrix and two for a real symmetric matrix.
We now show thatD is one in the present case. To this end, we focus on the local

behaviour of the eigenvalues, (1) andu_(¢) of Ui (T, ¢) = U1(T) where® stands for

the set of parametes w. Restricting the monodromy matrix to the degenerate subspace

at ¢ we obtain a 2« 2 matrix-valued function of.

i) — ((AYIUAT. D)) (W|UAT, 9)|®)
= (@ua(T, ;)1w)  (@ULT, 9)]®)

The eigenvalues of/ () are
us(9) = JW|ULT, )W) + (®|U1(t, 9)|P)]
H[(W|UL(T, 9)|¥) — (D|UL(T, 9)|®))? + |(¥|UL(T, 9)| D)7 Y2

Hence, equality of the eigenvalues, () = u_(¥%), is achieved by imposing three real
conditions:

(WIULT, )W) = (®|ULT, 9)|P) (10)
R(WULT, 9)|P)} =0 SUWNULT, 9)|P)} = 0. (11)

The eigenvalues of/; are nondegenerate, and therefore are also eigenvalugsbyf
(9). Suppose now that the two ‘crossing’ eigenvectdrs and |®) correspond tadistinct
eigenvalues exip;) and expig,) of V; note thatV is unitary by (7). By (9) we find

(W|UL(T, 9)|®) = (W|V*UL(T, )V |®) = (W¥|Uy(T, 9)|d)e P,

By hypothesis, exp{ipy — ¢2)] # 1, and thereforé W |U.(T, #)|®) = 0, which means that

(11) is automatically satisfied and equality of the eigenvalues is achieved by imposing just
one real condition, namely (10). Since.(¢¥) = exp[—ie+(?)T], with () defined
modulo 2r/T = o, it is thereby also expected that the set of crossings of Floquet
eigenvalueg, (¢) have codimension 1. The same conclusions applitaipon replacing

1% by R, which is a symmetry on For H3, we define a different dynamical symmetry,

W = R T% (12)

where R’ denotes rotation through about thez-axis. With this symmetry, the same
conclusions hold forff;. We note that in special cases the two distinct eigenvalud% of
are+1 and—1 [17]. However,V does not have the property? = V, and therefore the
designation of ‘generalized parity’ may be misleading.

The same general arguments suggesting that crossings leads to localization, which have
been discussed for the particle case in [17], are also applicable to our models. Accordingly,
we refer to crossing as the first mechanism of localization.

2.2. Averaging method and special frequencies

The existence of ‘special frequencies’ has been provenipiby an application [9] of

the averaging method to the WKB analysis of [1,8]. The averaging method is a very
useful technique [20] dating back to Lagrange (late 18th century). Special cases have
frequently been rediscovered. For example, Kayanuma [21] explained a localization result
of GroRmann and &hggi [22], that has a direct bearing upon the particle analogue of
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the present case, by exploiting the two-level approximation. His high-frequency solution
(w > A) is a good illustration of the averaging technique, that is by no means restricted
to the two-level atom. Neither is the argument of [9]. Assuming that the initial state is an
eigenstatdm) of S,, the following conditions are required for this type of localization [9]:
aS < o and

8/w =z, v=12... (13)

wherez, is one of the zeros of the zeroth-order Bessel functipn Combined with the

tunnelling conditions, @ <« y S, this implies thateS <« o <« yS/z,. So the larger, is,

the narrower the region of parameter space is where the localization mechanism is active.
By the von Neumann-Wigner argument discussed above in the context of the high-

frequency case, Floquet eigenvalues may cross along a curve {@,thg plane. When a

two-level approximation holds, this curve coincides with (13), with= 1; the arguments

have been spelt out for the particle case in [21,22,25] and hold for our models with

obvious modifications. Again by the same general reasoning as discussed in [25], the

two-level approximation is not valid for ‘too small an’, which also shows that the two

mechanisms listed above, crossing and averaging, are independent. Since both the crossing

mechanism and the averaging method are effectiveofos wo (as for the level crossing,

not exclusively), the third type of localization, which occurs in the adiabatic regirge wo

and is to be discussed next, is manifestly independent of the previous two.

2.3. Breakdown of quantum coherence

We now turn to the third mechanism of localization, namely a breakdown of a discrete
symmetry such a®. Following Leggett [7] we call this symmetry breaking ‘breakdown
of quantum coherence’. Our main result is the localizatiotoaf-lying states, e.gl £+ S),
for the dynamics defined bgf; and H; in the adiabatic regime. We also show that, when
w is ‘'not too small’,all states| + m) with m € [—S, S], are effectively localized, if the
dynamics is generated bys.

Let us conside; in the adiabatic regime first. b < wg, we mayfix the value ofr
and study the tunnelling induced by the (quasi)static Hamiltonian

Hy, = —¥S8.2 —aS, — 1S, (14)

where A = §sin(wt) is now a slowly varying function of. We adopt a two-level
approximation as in section 9 of [8]. In order to compute the splitting of the energy
level Eq = —y S?, we restrict the powers of

H=Hy-V
with

Ho= —yS.>— 1S,

V=aS, = %(S+ +5)
to the subspace spanned by S), diagonalize them and considr to be small. The
eigenvalues of the matri#* in this subspace can be written as thth power of some

numbersEy, and Ex, which can be considered as approximations of the true lowest two
energies. Then we obtain

E5 — EX = (Ex — En)(ES Y+ ESPEy + -+ ESY ~ (Ey — En)kES™
for which the level splittingAE = Ey — E;, can be computed.
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In the space spanned by S), the lowest nonvanishing ordércorresponds té = 2S.
To leading orderr/(y S) <« 1, we are thus led to diagonalizing the matrix

M_( (SIAEIS)  (SIV?| =) )
(—SIV®|S) (=S| —5) )"

(15)

On the diagonal positions off we have neglected matrix elements of the form
(S| A% s*|5) as compared with{S|H2%|S) because of the conditiom/(y$) « 1.

There are, however, many such terms and we shall return to them at the end of this section.
Assuming, for the moment, that (15) is a good approximation, we end up with

. 2\
(£SIHZS| £ S) = (yS? £ 2% ~ (y5§H>5 £ 282 (y 5251 = (y§9H)* (1 + ) (16)
Y

while
(S|V3S] — 8) = (=S|VZ|S) = a®(S]5%] — §) = a5 (29)! (17)
The eigenvalues,. of M are

ex = 3(tr M) £ 3/ (tr M)2 — 4detM

2
= (r$9% + J (¥ SD% — (y§9)% [1 - <2§> } + ot (25)12

925 2% 2 a 48
=(ys)& {1+ <y> +<)/S2> @sy2t. (18)

48 as 45
_(« 2 (28" _ (2«
A:(ySZ) (@5 ~(ey52> ‘(ey5> | (19)

By obtaining the approximate equality we have exploited Stirling’s theorem [23]. The
guantity A is very small due to the tunnelling condition. We thus find

fr ~ (y P {lj: (Zi/M) [1+ % (%)z A:|} : (20)

Supposer > 0. Thene, corresponds to the ground state. The corresponding eigenvalue
equation is

M( l) = 8( l)
az a
|eadi |g to

(8§22 (1+ 2:) a1 +a®2)lap = (y 54> <1+ 21,M> [” : <l)2 A} '

Let

2\2x
Hence, we obtain fok > 0 and using (19)

a A [(y$2\* 2041\ /¥ \2
a B(2S) (a) <1+ y) ()

= s (o) (20 ()
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Now again by Stirling’s theorem [23]

1 (0{)2S~<2S0l 23_(20[)25
e \ysz) “\eysz) ~ \eys

so thataz/a; is exponentially small ag/(yS) « 1 due to the tunnelling condition and,
thus, the spin is to be localized. if < 0, thene_ corresponds to the ground state and we
find thatai/az is exponentially small; as expected, the spin ‘gets stuck’ in one of the wells
and quantum coherence is broken.

Expression (18) is a key issue due to two reasons. First, it shows clearly that here we
have to require

20 Ly (22)

since otherwise perturbation theory is senseless. Furthermore, it indicates how smoai
be in order for localization to break down. When both terms under the square root in (18)
are of equal magnitude so that

2\ a \¥ 20 \**
kPN el 2912~ [ =) . 2
Y <V52> @3 (e)/5> @3)

Formulated as an understatementias to be rather small.
We now return to approximation (15). We have estimated the diagonal terms
(£SI(Ho +V)?5| £ S) by (£S|HZ5| £ S). We write symbolically

(Ho+V)* = HF + > {H{VS ™)
k#£2S

where, in the last sum, aAII possible orderings)?afelative to Ho—and consistent with :[here
being (25 — k) operatorsy, andk operatorsHp—are included. The operator norm H@S
is

IHZ| = sup [(®IHZ|W)| = (yS?+1515)% = || Holl*
[[@l=/I¥|=1

and hence
(S| EEVE R £ )< Y IHS IV < Y ISV

k#2S k#2S k£2S
_ sy (Bl + VD — |1 Hol®
— | H |
Ll
v\
= |1+ =] —1|1Hl*
| Holl
VI 4
<exp(25 10} 25, (24)
| Holl

We have||)>|| =aS/2 and | Hol = y S2 + |5]S. If, then,

) S
VI g5 S
|| Ho| 2y§

it may easily be checked from (24) that the conclusions using (15) are unaffected, the
corrections being small.

25 -%«1 (25)
Y
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Figure 1. Eigenvectors of the Hamiltonial = —yS?, — AS, + S, with parameters, = 1,

«a =1, andix = 0.01. The vertical axes show the components of each eigenvector as a function
of S., which is diagonal. In the legendgetl.datrepresents a ground-state eigenvector. It is
localized. The same does not hold f@t2.dat which represents an eigenvector that corresponds
to an excited state.

The right-hand side of (23) is an extremely small number, of the orderfgiven by
(4). In fact, we know that tunnelling is restored in (14) for— 0. Since tunnelling lifts
the degeneracy of the eigenstates of

Hi(h=0) =—yS?—as,

for « # 0, their projection operators are strongly analytic [27], whateyesince in general
no crossing occurs. That is, ongg is of the order of the level splitting fok = O,
localization breaks down. The point is that the eigenstatd$,6f = 0) are also eigenstates
of R and, thus, localized ifoth wells. This somewhat subtle feature is a pure quantum
phenomenon due to tunnelling and should disappear in the classicalSlimit co and
h — 0 with S = o constant, sayg = 1. It is, however, not obvious how to prove such a
statement technically. For the sake of completeness this is done in appendix C.
The restriction to thdow-lying states in the above result ot a technicality. If the
state we start with is an excited state) for which m ~ 0, the perturbation-1.S, in (14)
has little effect. Hence, it is plausible that tunnelling will persist. This is shown in figure 1.
We now considerfs. It has been shown in [9] that the evolution operattt, 7o)
from 1y to + may be written

Us(t, tg) = exp(—I;tSZ> exp[;_l(t - to)l:lo:| exp(l;_lUtSZ> (26)
where
Ho= —y8.2 — aS, — S.. (27)

This result is exact. By (26), the tunnelling amplitude between eigengiajeand | — m)
of S, equals

[(—=m|Us(t, to)|m)| = |(—m|e7 0 Ho|m)] (28)

and, thereforeH, is the exact effective Hamiltonian for tunnelling—for all times!
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Sincew in (27) plays the role of in (14), we may thus assert, by (22) and (23), that if
20\ 2w
— )] «—«1 (29)
(eVS ) Y

then there idocalization This concludes the analysis &;. Note, however, that due to
(29) we havew 3> wp. That is to say, we are still in the high-frequency region and nothing
can be said about the behaviour undgx(¢) in the adiabatic regime.

We finally turn to H,. A folklore dictum (for which, even in the atomic case, no proof
exists; see [18] and references quoted therein) asserts thataditizatic limit the average
of the transition rate over one period@’)(

N 1 T N
(Fpg) = T /0 drTHE (] cos(er)]) (30)

is the leading term in a (presumably asymptotic) expansion of the transition (in our case,

tunnelling) rate in powers ab = 27/ T. Herngé(A) is the tunnelling rate for thetatic
model

[:]2 = _VSZZ — ASx (31)

with (fixed) indexi. We denote the time average by angular brackets. In our case, with
c:=|E|/(ao), d :=2S, and|E| = yo?), we have to evaluate [1, 8]

z d H COSX\ €
dx —cln—— | = de (—— ) .
/0 exp[ CnCOSx:| fo < d )

Wallis’ formula [28] provides us with the estimate

2 2 sin 2n 'n+ %) 1 1 1
7 /0 * <COS> = ATa+D  Jan < g ' 1282 " )

We therefore obtain

1

~ o 2
rizy~1,_of — 32
i~ T () @)

where
28
(0702

Fyo=10" — 33
0=Tp <|E|) (33)

is the dominant term in the tunnelling rate [1] wiﬂc’b‘1 as an attempt frequency.
Equation (32) shows that tunnelling persists 85 in the adiabatic regime (in contrast
to H,), albeit at a slightly lower rate.

We have now completed our analysis of the localization properties of Hamiltonians
Hi, H», and Hs. It includes both the adiabatic regian < wg, and the region where
blocking of the spin may be proved by the averaging method, which requireg «» and
o > oS; the latter overlaps the region where crossings occur. It is natural to investigate the
complementary domain, whetg < o < «S: Does localization hold here too? Answering
this question will be the subject of section 3.
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3. Chaotic quantum tunnelling

The tunnelling of particles was studied from a completely different point of view than ours
in [13—-15]. The presumably most striking result is due to Bohigfaal [14]. For a special
qguantum billiard, they found that the tunnelling rate is dramatically enhaaiceae classical
chaos border Despite several efforts, a comprehensive theory of this phenomenon does not
seem to exist.

It may well be that our models provide the simplest nontrivial example of classically
chaotic dynamics. This is exemplified in appendix B by the calculation oftbehasticity
parameterfor H,. We do so by using the Chirikov criterion of resonance overlap,

sp=2] % (34)

ya)

That is, fors, < 1 the classical system is regular whereas it is in the chaotic regime for
s, > 1. Note thats, becomes large a® — 0. There exists, however, a small region
aroundw = 0 where integrability is restored and adiabatic invariants survive everywhere
in phase space—except for a set of small Lebesgue measure, proportieng2% The
other simplifying feature (in comparison with [16]) is the finite dimension of the Hilbert
space, which eliminates the need of truncation.

We are going to study the tunnelling probability as a function of time for the
Hamiltonians #; and H,, which we modify slightly for technical reasons related to the
numerics. We now consider

A )/SZ2 .

Hy=— 3 + oS, + 88, sin(wt) (35)
A ¥ S.2 .

H, = 5 + a (14 sin(wt)) S;. (36)

We first consider the classical dynamics #dt. The classical Hamiltoniah = h(q, p) is
h(S., $) = —ySCcoS 0 + aS sind cosp + 85 cosh sinwr (37)

where S, = Ssiné cosg, S, = Ssind sing, andS, = Scosh. The canonically conjugate
variables for this system [1] age= S, andp = —¢, and therefore the equations of motions
are

. dh
¢ = 35 = —2y cosf + § sin(wt) — o cothd cos¢p (38)
Z
and
) oh . .
S, = —% = aSsingsinb. (39)

Figures 2-5 exhibit Poincarsections for the classical version of the Hamiltonian (1)
with fixed y — y /S andincreasingé, and show that in this way we enter the classically
chaotic regime. The borderline of chaotic motion is givensby 0.5, in agreement with
the occurrence of the first avoided crossing.

The Poincag sections are obtained by the stroboscopic map, as is usual in the case
of a periodically driven Hamiltonian system. For the sake of compariSos,9 and the
parametersr andy equal those in [1]. The Floquet spectrum is also shown as a function
of § for w = 0.5.

As an important preliminary check, we have verified fdt that we obtain the right
limit behaviour asw — oo. By first-order perturbation theory, the Floquet eigenvalues
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Figure 2. Poincaé section for the classical Hamiltonign= —y S cog 6 + « S sind cosp +

8S cosd sinwt. Its quantum analogue &;. We have takery = 1,0 =1, S =9, w = 0.5, and
§ = 0.001. The vertical axis represen§s/S and the horizontal axis represents The above
domain is inside the integrable region and corresponds to &deefigure 6.
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Figure 3. As in figure 2, except fos = 0.5.
integrable and chaotic region.

Here we are at the borderline between the

should agree with the values of [1] (after multiplication by/2> and reduction mod:2—
see table 1) to ordet/w. This is exemplified by table 1 and is an important check of our

numerical results.

In order to determine the Floquet spectrum, we have integrated the differential equations
of appendix A, using unitarity violation of the monodromy matrix as an additional check

on global errors.

The usual Runge—Kutta error estimate (see appendix A) is not very reliable, and therefore
table 1 provides a crucial check on our numerical results. Note thag, f08, the tunnelling
rate is of the order of 108 requiring a minimum of 20 meaningful digits and necessarily

qguadruple precision.

We now present our numerical result for the tunnelling probability as a function of time.
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Figure 4. As in figure 2, except fos = 1. This is caseB in figure 6. We are now are in the
chaotic regime.
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Figure 5. As in figure 2, except fos = 5. We are deeply inside the chaotic region. Note that
our initial state atS,/S = g = 0.66 does not lie in a regular region.

As in the autonomous case, the tunnelling probability does not reach the value 1; this would
only occur in the limitS — oo.

In Figure 6 we display the tunnelling probability as a function of time in three cases:
the static one ST (after van Hemmen anatéS[1]), (A) the casew = 0.5 and§ = 0.001,
and (B) the classically chaotic regian = 0.5, § = 1. We have kepty = 9 ande = 1
throughout and started with the initial stat@ = 6), which has a very small splitting
(= 107" in the static case. It is seen that close agreement exists between ST and A. In
the transition from classically integrable to chaotic behaviour, nar®jy— (B), which
roughly corresponds to the variation in the Poigcaections of figures 2—4, an opposite
effect to the one apparently observed in [15] is verified: the tunnelling probability is reduced
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Table 1. Check of the results for the modﬁl of the static Hamiltonian. These eigenvalues
were obtained withy = 9, § = 0.001, w = 500, = 1. E. are the eigenvalues obtained by
diagonalization of the monodromy matrix which are of the fagn= g s So, to obtain
the values above, one must calculate (lgg. These values must be multiplied by 27 and
confronted with the values obtained for van Hemméh ) for the eigenvalues of the static
Hamiltonians = 0. 8 is the estimated precision.

E. x £ (0 =500) Euy B

—9.220291 881760 114 850 200 550/89- 2 79.57 7.33728348300332380503527380 ~3£0

—3.980741518 036 502 834 887 348/B8- 2 79.57 3.167 779 460 356 240 263 315 887 5810310
8.429 476322 849 272559 398 102/54- 3 79.57 —0.670792 728 941 682 368 583 472 393131
5.216 498 782563 983592 889 96772 3 79.57 —4.151156 421 101 217 941 323 506 93063
8.774 637 245986 085 926 460 97972 2 79.57 —6.982636303 677337 320169798599 —3®
0.136 552 359 392 034 079 030 707 79 7957  —10.866 495939 805 844 893 146076409 ~ID
0.128 325 790 112 240 690 849 646 04 7957  —10.211843 705063453 038139245735 10
0.211805 495502 701 898 332 715 72 7957  —16.854947534101353083524721593 ~I0
0.211 962 963232 154197 51928041 7957  —16.867478511550537 141389124295 I
0.321507 652 906 522 877 484110 21 7957  —25584768402233723023730743735 ~I0
0.321508 257 797 453 050819 71556 7957  —25.584816538382275536 760504 660 ~I0
0.457 937 623528 463 812 541 466 68 7957  —36.44159384385833535074005250 ~ib
0.457 937 622 177 687 020 445 729 70 7957  —36.441593 781100890451 626824570 I
0.620 169 469 642 367 619 500 283 36 7957  —49.356707032560733890838852595 IV
0.620 169 393 454 196 292 292 656 06 7957  —49.3567070325290316128240855 19
1.024 425673990868 650911511 6 7957  —81.2647202253313333614171467 10
0.804 886 347 272543971 539 195 27 7957  —64.3020423588952439419902455 19
0.804 882 757 462 375 096 355 065 20 7957  —64.3020423588952377511090805 19
1.0244293411027355351707145 7957  —81.2647202253313333610376789 19

from a finite value of the order of 18 to a blocking of the spin in the chaotic region (B,C)!
This blocking of the spin is not rigorously accounted for by the averaging method of [9],
because the conditionm > «S does not hold here, but it is clear that even in this region
the behaviour of spins differs qualitatively from the particle case.

There may be two independent reasons for the above surprising behaviour, which are
different from both [15] and the more comprehensive theory of [30]. First, the classical
transport mechanism, diffusion inside the chaotic region of phase space, depends on the
existence of a symmetry-related doublet which remains in a regular region even after chaos
becomes global. The anharmonic oscillator [13, 15] exhibits this behaviour but our model
does not. See figure 5 where the initial state becomes immersed in the chaotic region.
Secondly, we have not followed the behaviour of doublets of Floquet eigenvalues, as in [15].
In our model Hamiltoniard;, the splitting of such doublets indeed grows with increasing
8 (for fixed w), i.e. when we gradually penetrate the chaotic region of parameters. This
is, however, mostly an effect of the perturbation, which in our case is diagonal in the
unperturbed operatary S?,)—in contrast to the oscillator case of [15]. Instead we have
dealt with a global quantity, the tunnelling probability, which involves a summation over
several (intermediate) Floquet states. This is the most relevant measurable quantity, except
in situations where only a slight deviation from the static case occurs.

This section was bound to be phenomenological because we were not able to treat the
spin’s behaviour analytically once it had entered the chaotic regime. The main result here
is the numerical verification that the spin continues to be blocked in this region, reflecting a
marked difference from the particle case, where acceleration of tunnelling by several orders
of magnitude has been shown to occur [13-15].
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Figure 6. Transition probability for the quantum-mechanical Hamiltonidn as a function of
time for the cases ST (static), A (integrable; cf figure 2) and B (chaotic; cf figure 4). There is
good agreement between ST and A, and the hampering (blocking) of the spin in case B.

4. Conclusion

Forw > wp andw > y, the Hamiltonianf; hasall Floquet states localized either on the
right or on the left. If (29) applies, the localization only holds for the ‘lowest’ states. For
H, as given by [2] there is always tunnelling. In the adiabatic regime, the rate is slightly
lower thanwg. For H; with > wo andw > «, the spin is hampered. In the adiabatic
regime, thelowest states are even localized.

The three mechanisms of localization of a quantum spin which we have analysed in
the present paper, namely crossing of Floquet eigenvalues, averaging, and spatial symmetry
breakdown, are omnipresent. So they seem to be of considerable conceptual importance,
even more so since spin behaviour is markedly different from that of particles and a few
fascinating open problems remain to be solved. For instance, do theoretical superstructures
existt behind Floquet-level crossing and averaging? Is there a precise semiclassical theory

1 Grossmann and &hggi [22] found a case where the two seem to coincide. Their spin has quantum number
§ = 1, the opposite of what we have considered here, name}y%. The evidence is purely numerical, provided

by figure 1 of their paper, and stems from equation (27) of [31]. Equation (27) is an approximate identity which is
valid for the high frequency case but whose derivation is missing. For%p’ve haves2/2h = 1 the unit matrix.

and thusH; = —yh?1 — § coswt)S, — aS,. We now rotate throughr/2 about they-axis so as to interchange

the x- and thez-axis and are left with Shierley’s Hamiltonian. The rest is plain averaging.
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of blocking a spin in the chaotic regime? Can one extend the averaging method of [9] to
larger domains? We are looking forward to the first experiments probing time-dependent
spin quantum tunnelling in an alternating magnetic field. It may be that we will all have to
face some puzzling surprises.
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Appendix A. Numerics
The Floquet eigenvalues, and eigenfunctionsl,, may be defined [32] in terms of the
evolution operatolU (¢) evaluated at = T = 27 /w and starting at = 0,

Uw, =e 'y, (40)

In our case the Hilbert space 5+, and—S < n < S while n is an integer. We solve
the Schédinger equation up to=T

ow .
i— = HWV 41
5 (41)
in terms of the(2S + 1) orthonormal eigenfunctionign) of S.:
S.|m) = m|m) m=-S,...,8 (42)

through the fourth-order Runge—Kutta method. That is, we tal® = |m) and thus find

the columns of the matriX/(T). The eigenvectors and eigenvalues follow as usual. The
estimated error at each iteration|ig® with 4| being the integration time step. For~ 1,

we have divided each period inté; = 4 x 10 parts, and a rough estimate of the precision
is thus [2r (25 + 1) /(wN7)]® x Ny ~ 10717, However, using violation of unitarity of/ (')

as anad hoccriterion:

11— 1e™T|| > B

we arrived at B < 1075, a much lower precision than 1¥. This is probably due to an
inaccuracy in the diagonalization process.

For w small, it is important to sample the evolution during one period. We divided one
period intoN intervals with starting points; and 1< i < N, and find (by integration, as
above) the vectord™ = U (n;, 0)|mo) where|my) is a fixed tunnelling state (withg = 6).
Furthermore, we evaluatel”: using the Floquet eigenvalues and eigenvectors so as to find
W(n; +T). In the figures, we have kept only tineaximaof the transition probability using
this procedure for = 0.5.

Appendix B. Estimating the stochasticity parameter

Let us consider the classical model
HS = —%SZZ — &Sy COSwt. (43)
Defining the canonical variables= S,, and p = —¢, we may write

Sy =/ 82 — S.%2cosp = /52 — g2 cosp.

1 For Ha, with the parameterg = 9, @ = 1, § = 1.0, andw = 0.5, we have takeN; = 4 x 1CP.
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We split HS' = Hy + V(1) so that

N Yoo
Hy=—-=5§,
0 § "z

V() = —a\/m COS¢p CoSwt .

The condition for a resonance of orderis
9 Ho
m-— —
dq
Equation (44) defineg = ¢,,, the angular momentum at the resonance, and ,,, the
corresponding frequency. We now transform to variables centred about the resonance,

J=q—anm (45)
¢ =¢—Qut. (46)
The generating functiod, performing this canonical transformation is
Fo=(J 4+ gn)(¢ — wt) = F2(p, J)
with 8 F»/d¢ = g andd F»/dJ = ¢. The new Hamiltonian is

d@ui+d) 4 oI Qui+§)
>+aJy—%ﬁ< i ) (47)

2

and

. (44)

K(J, ¢, 1) ~ constantf J? (92Ho
9 b ~ 2 aqz

q4=Aqm

In (47) we write cogwt) = %(ei”’f + e and keep only the resonant terms. We them find
that onlym = +£1 survives in (47). The upshot is, up to an irrelevant constant,

yJ?> oS .| o\
K=-"+ 1-(—). 4
3 + > cos¢p <2y> (48)

Comparing (48) with the pendulum Hamiltoni%g — mg cosg, we see that the width of
an island in angular momentum space is

KS\?
Ag =422
1 (2V>

with
oS o \?
K=—/1—--—]). 49
2 <2y> 49)
The spacingA’ between two neighbouring resonances is
Sw ION) ION)
A=— =qln=1—qlp=—1= 55—\ -5 - (50)
Y 2 2y

The Chirikov criterion [33] asserts that wheéyi = Ag, the particle is able to wander about
all of phase space, and global chaos sets in. In our case this gives, by (48) and (49),

w o w 2 % o
©_, [ 1_() ~2 % (51)
Y Y 2y Y

Hence, when thstochasticity parameter

sp==2¢ﬁZ’ (52)

is of order one, there is a transition to global chaos (stochasticity). The factor of 2 in (52)
is far from optimal. Equation (52) provides only an order of magnitude.
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Appendix C. Classical limit

In the classical limit:i — 0, § — oo in conjunction withzS = 1o, say 1, the tunnelling
condition becomes

aKLhyS=y (53)
since now

RS = 1. (54)
We rewrite H; as given by (14) in the correct-dimensional form,

Hy = —yh?S.> — ahS, — MRS, (55)
where, now,S, andS. are dimensionless. Because of (58), may be written

- .2 s .S
Let Q¢(1) denote the ground state of,. Define the order parameter

S,
ms(A) = (QO(K)I§|QO(A)>- (57)

If the ground state is &unnelling state, it is (fore« — 0 andx — 0) a linear combination
of states| + S) and| — S) with equal coefficients (forS — o). In the classical limit, it is
thus natural to say that there is tunnelling, if

lim lim () =0 (58)
and no tunnelling (localization in one of the wells depending on whether0 or 1 < 0),
if

lano Sll_r>noo ms(A) # 0. (59)

These notions make sense, with the same meaning as above, for finite quantum systems
having S large. However, the double limit witfirst S — oo andthen A, — O restores
localization. That is to say, (58) holds, as we now prove.

Proposition In the classical limitz — 0 andS — oo with &S = o, say 1, localization
holds under the conditioh « yhS =T.

Proof. In the classical limit, the spins behave like classical rotors: = Scosd,
Sy = Ssind cosgp, S, = Ssind sing. Let us define
€50, 9) =mings (0, ¢) (60)
where
1\? S+1 S+1
gi 6, ¢)=—y <S;L> cofh —a (:) sind cosp — A (;r) cosd (61)
g5 (8, ¢) = —y co€ 6 — a'sSinf cosp — A COSH. (62)

Clearly, g5 (6, ¢) is the classical rotor energy ang is a slight modification of it, which
arises naturally because of Lieb’s interlacing inequalities [34]. Furthermore, (60) and (61)
are the corresponding ground-state energies.

The following upper and lower bounds hold [34]:

eg(A—¢)— egr()»)
I3

eg (M) — e?(k — &)

S,
S (Lo 1820() < (63)



6388 J L van Hemmen et al

whatevers > 0. Note that

g(0,9) = lim g5 (0, ¢) = lm 50, ¢) (64)
where

20, ¢) = —y cog 0 — a sin(0) cog ) — A cog6). (65)
We also have

_ . i _ .

e(A) = Sliﬂoo ey = r‘(%ng(@, ). (66)
Taking the limitS — oo in (63) first andnext the limit 2 | 0, we obtain

d-e(n) _ S, dre(n)

a < Slinoo(Qo()»)IEISZo(k)) < @ (67)

where de(1)/dr denote the right (resp. left) derivatives ofig. If A #£ 0, g(8, ¢) has a
unique minimum at(p(1), ¢o(1)) and

Slim mg(A) = cosfy(N). (68)

At & = 0 andy = «/2 a simple bifurcation occurs with ‘exchange of stability’. leok 2y
andx =0, g(0, ¢) possesses two minima,

_ . _
Oy =7 — arcsm5 ¢g =0 (69)
and
.o
05 = arcsm5 ¢g =0. (70)
Because of (68)—(70) we thus find
o 2
x“—[g, SILmOOmS(A) =—cog6;) =,/1— (2)/> (71)
whereas
o 2
. . _ [
AIer(}+ Sll_)mooms(k) = —cog6y) 1 (2;/) . (72)

Therefore the ground state is localized in the classical limit and quantum coherence is
broken, providedr < 2y.
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